Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nutrients ; 14(2)2022 Jan 11.
Article in English | MEDLINE | ID: covidwho-1637442

ABSTRACT

In the last two years, there has been a surge in the number of publications on the trace element selenium (Se) and selenocysteine-containing selenoproteins in human health, largely due to the pandemic and the multiple roles that this micronutrient and Se-dependent selenoproteins play in various aspects of the disease [...].


Subject(s)
COVID-19/blood , COVID-19/complications , SARS-CoV-2 , Selenium/deficiency , Selenoprotein P/blood , COVID-19/etiology , COVID-19/mortality , Humans , Nutritional Status , Selenocysteine/blood , Selenocysteine/deficiency , Selenoproteins/blood , Selenoproteins/deficiency , Post-Acute COVID-19 Syndrome
2.
Int J Mol Sci ; 23(1)2021 Dec 28.
Article in English | MEDLINE | ID: covidwho-1580697

ABSTRACT

Viral infections have afflicted human health and despite great advancements in scientific knowledge and technologies, continue to affect our society today. The current coronavirus (COVID-19) pandemic has put a spotlight on the need to review the evidence on the impact of nutritional strategies to maintain a healthy immune system, particularly in instances where there are limited therapeutic treatments. Selenium, an essential trace element in humans, has a long history of lowering the occurrence and severity of viral infections. Much of the benefits derived from selenium are due to its incorporation into selenocysteine, an important component of proteins known as selenoproteins. Viral infections are associated with an increase in reactive oxygen species and may result in oxidative stress. Studies suggest that selenium deficiency alters immune response and viral infection by increasing oxidative stress and the rate of mutations in the viral genome, leading to an increase in pathogenicity and damage to the host. This review examines viral infections, including the novel SARS-CoV-2, in the context of selenium, in order to inform potential nutritional strategies to maintain a healthy immune system.


Subject(s)
SARS-CoV-2/immunology , Selenium/immunology , Selenium/pharmacology , Virus Diseases/diet therapy , Virus Diseases/immunology , Animals , Dietary Supplements , Humans , Reactive Oxygen Species/metabolism , SARS-CoV-2/drug effects , Selenium/deficiency , Selenoproteins/physiology
3.
Biol Trace Elem Res ; 200(9): 3945-3956, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1503913

ABSTRACT

Several studies have indicated that selenium deficiency may be detrimental in the context of various viral disorders, and in the case of COVID-19, several studies have reported heterogeneous results concerning the association of selenium deficiency with the severity of disease. To summarize the available data surrounding the association of body selenium levels with the outcomes of COVID-19, a systematic search was performed in the Medline database (PubMed), Scopus, Cochrane Library, Embase, and Web of Science using keywords including "SARS-CoV-2," "COVID-19," and "selenium," Studies evaluating the association of COVID-19 with body selenium levels were included. Among 1,862 articles viewed in the database search, 10 articles were included after title, abstract, and full-text review. One study was further included after searching the literature again for any newly published articles. Out of 11 included studies, 10 studies measured serum selenium level, and one study investigated urinary selenium level. Three of 10 studies measured serum SELENOP level as well as selenium level. Glutathione peroxidase-3 level in serum was also assessed in one study. The reported outcomes were severity, mortality, and risk of COVID-19. Nine studies indicated that a lower serum selenium level is associated with worse outcomes. Two studies reported no significant association between serum selenium level and COVID-19. In one study, urinary selenium level was reported to be higher in severe and fatal cases compared to non-severe and recovered patients, respectively. In most cases, selenium deficiency was associated with worse outcomes, and selenium levels in COVID-19 patients were lower than in healthy individuals. Thus, it could be concluded that cautious selenium supplementation in COVID-19 patients may be helpful to prevent disease progression. However, randomized clinical trials are needed to confirm this.


Subject(s)
COVID-19 , Malnutrition , Selenium , Humans , SARS-CoV-2 , Selenium/deficiency , Selenoprotein P
4.
Nutrients ; 13(6)2021 Jun 20.
Article in English | MEDLINE | ID: covidwho-1273493

ABSTRACT

The interplay between inflammation and oxidative stress is a vicious circle, potentially resulting in organ damage. Essential micronutrients such as selenium (Se) and zinc (Zn) support anti-oxidative defense systems and are commonly depleted in severe disease. This single-center retrospective study investigated micronutrient levels under Se and Zn supplementation in critically ill patients with COVID-19 induced acute respiratory distress syndrome (ARDS) and explored potential relationships with immunological and clinical parameters. According to intensive care unit (ICU) standard operating procedures, patients received 1.0 mg of intravenous Se daily on top of artificial nutrition, which contained various amounts of Se and Zn. Micronutrients, inflammatory cytokines, lymphocyte subsets and clinical data were extracted from the patient data management system on admission and after 10 to 14 days of treatment. Forty-six patients were screened for eligibility and 22 patients were included in the study. Twenty-one patients (95%) suffered from severe ARDS and 14 patients (64%) survived to ICU discharge. On admission, the majority of patients had low Se status biomarkers and Zn levels, along with elevated inflammatory parameters. Se supplementation significantly elevated Se (p = 0.027) and selenoprotein P levels (SELENOP; p = 0.016) to normal range. Accordingly, glutathione peroxidase 3 (GPx3) activity increased over time (p = 0.021). Se biomarkers, most notably SELENOP, were inversely correlated with CRP (rs = -0.495), PCT (rs = -0.413), IL-6 (rs = -0.429), IL-1ß (rs = -0.440) and IL-10 (rs = -0.461). Positive associations were found for CD8+ T cells (rs = 0.636), NK cells (rs = 0.772), total IgG (rs = 0.493) and PaO2/FiO2 ratios (rs = 0.504). In addition, survivors tended to have higher Se levels after 10 to 14 days compared to non-survivors (p = 0.075). Sufficient Se and Zn levels may potentially be of clinical significance for an adequate immune response in critically ill patients with severe COVID-19 ARDS.


Subject(s)
COVID-19 Drug Treatment , Critical Illness/therapy , Deficiency Diseases/drug therapy , Dietary Supplements , Micronutrients/therapeutic use , Selenium/therapeutic use , Zinc/therapeutic use , Aged , C-Reactive Protein/metabolism , COVID-19/blood , COVID-19/immunology , Deficiency Diseases/complications , Humans , Immune System/drug effects , Inflammation/blood , Inflammation/drug therapy , Intensive Care Units , Interleukins/blood , Male , Micronutrients/blood , Micronutrients/deficiency , Middle Aged , Oxygen/metabolism , Respiratory Distress Syndrome/drug therapy , Retrospective Studies , SARS-CoV-2 , Selenium/blood , Selenium/deficiency , Selenoprotein P/blood , Severity of Illness Index , Zinc/blood , Zinc/deficiency
5.
Adv Food Nutr Res ; 96: 417-429, 2021.
Article in English | MEDLINE | ID: covidwho-1265623

ABSTRACT

Selenium (Se) is an element commonly found in the environment at different levels. Its compounds are found in soil, water, and air. This element is also present in raw materials of plant and animal origin, so it can be introduced into human organisms through food. Selenium is a cofactor of enzymes responsible for the antioxidant protection of the body and plays an important role in regulating inflammatory processes in the body. A deficiency in selenium is associated with a number of viral diseases, including COVID-19. This element, taken in excess, may have a toxic effect in the form of joint diseases and diseases of the blood system. Persistent selenium deficiency in the body may also impact infertility, and in such cases supplementation is needed.


Subject(s)
COVID-19/blood , Nutritional Status , Selenium/blood , COVID-19/etiology , Female , Humans , Infertility/blood , Infertility/drug therapy , Infertility/etiology , Male , Selenium/deficiency , Selenium/therapeutic use , Selenium/toxicity , Virus Diseases/blood , Virus Diseases/etiology
6.
BMC Infect Dis ; 21(1): 452, 2021 May 19.
Article in English | MEDLINE | ID: covidwho-1236546

ABSTRACT

BACKGROUND: COVID-19 has impacted populations around the world, with the fatality rate varying dramatically across countries. Selenium, as one of the important micronutrients implicated in viral infections, was suggested to play roles. METHODS: An ecological study was performed to assess the association between the COVID-19 related fatality and the selenium content both from crops and topsoil, in China. RESULTS: Totally, 14,045 COVID-19 cases were reported from 147 cities during 8 December 2019-13 December 2020 were included. Based on selenium content in crops, the case fatality rates (CFRs) gradually increased from 1.17% in non-selenium-deficient areas, to 1.28% in moderate-selenium-deficient areas, and further to 3.16% in severe-selenium-deficient areas (P = 0.002). Based on selenium content in topsoil, the CFRs gradually increased from 0.76% in non-selenium-deficient areas, to 1.70% in moderate-selenium-deficient areas, and further to 1.85% in severe-selenium-deficient areas (P < 0.001). The zero-inflated negative binomial regression model showed a significantly higher fatality risk in cities with severe-selenium-deficient selenium content in crops than non-selenium-deficient cities, with incidence rate ratio (IRR) of 3.88 (95% CIs: 1.21-12.52), which was further confirmed by regression fitting the association between CFR of COVID-19 and selenium content in topsoil, with the IRR of 2.38 (95% CIs: 1.14-4.98) for moderate-selenium-deficient cities and 3.06 (1.49-6.27) for severe-selenium-deficient cities. CONCLUSIONS: Regional selenium deficiency might be related to an increased CFR of COVID-19. Future studies are needed to explore the associations between selenium status and disease outcome at individual-level.


Subject(s)
COVID-19/diagnosis , Selenium/analysis , COVID-19/mortality , COVID-19/virology , China/epidemiology , Crops, Agricultural/chemistry , Humans , Micronutrients/analysis , SARS-CoV-2/isolation & purification , Selenium/deficiency , Soil/chemistry , Survival Analysis
7.
Nutrition ; 82: 111053, 2021 02.
Article in English | MEDLINE | ID: covidwho-977166

ABSTRACT

The acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has affected millions of individuals, causing major health and economic disruptions worldwide. The pandemic is still raging, with a second and third wave in a few countries, while new infections steadily rise in India. Nutrition and immune status are two critical aspects of fighting the virus successfully. Recently, selenium status was reported to positively correlate with the survival of patients with COVID-19 compared with non-survivors. We analyzed the blood serum levels in 30 apparently healthy individuals and in 30 patients with confirmed COVID-19 infection in the southern part of India. The patients showed significantly lower selenium levels of 69.2 ± 8.7 ng/mL than controls 79.1 ± 10.9 ng/mL. The difference was statistically significant (P = 0.0003). Interestingly, the control group showed a borderline level of selenium, suggesting that the level of this micronutrient is not optimum in the population studied. The results of this exploratory study pave the way for further research in a larger population and suggest that selenium supplementation may be helpful in reducing the effects of the virus.


Subject(s)
COVID-19/blood , Nutritional Status , SARS-CoV-2 , Selenium/blood , Trace Elements/blood , Adolescent , Adult , COVID-19/mortality , COVID-19/virology , Case-Control Studies , Female , Humans , India , Male , Middle Aged , Selenium/deficiency , Young Adult
8.
Int J Infect Dis ; 100: 390-393, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-959800

ABSTRACT

The relationship between immunity and nutrition is well known and its role in coronavirus disease 2019 (COVID-19) is also being paid great attention. However, the nutritional status of COVID-19 patients is unknown. Vitamin B1, B6, B12, vitamin D (25-hydroxyvitamin D), folate, selenium, and zinc levels were measured in 50 hospitalized patients with COVID-19. Overall, 76% of the patients were vitamin D deficient and 42% were selenium deficient. No significant increase in the incidence of deficiency was found for vitamins B1, B6, and B12, folate, and zinc in patients with COVID-19. The COVID-19 group showed significantly lower vitamin D values than the healthy control group (150 people, matched by age/sex). Severe vitamin D deficiency (based on a cut-off of ≤10 ng/dl) was found in 24.0% of the patients in the COVID-19 group and 7.3% in the control group. Among 12 patients with respiratory distress, 11 (91.7%) were deficient in at least one nutrient. However, patients without respiratory distress showed a deficiency in 30/38 cases (78.9%; p = 0.425). These results suggest that a deficiency of vitamin D or selenium may decrease the immune defenses against COVID-19 and cause progression to severe disease. However, more precise and large-scale studies are needed.


Subject(s)
Betacoronavirus , Coronavirus Infections/metabolism , Nutritional Status , Pneumonia, Viral/metabolism , Adult , Aged , COVID-19 , Coronavirus Infections/immunology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2 , Selenium/deficiency , Vitamin D Deficiency/epidemiology , Vitamins/blood , Zinc/blood
9.
Redox Biol ; 37: 101709, 2020 10.
Article in English | MEDLINE | ID: covidwho-739131

ABSTRACT

OBJECTIVE: The trace element selenium (Se) is needed for regular biosynthesis of selenoproteins, which contribute to antioxidative defense systems and affect redox-regulated signaling. Elevated Se intake and selenoprotein expression levels have been associated with impaired hydrogen peroxide-dependent signaling by insulin, leading to hyperglycemia and insulin resistance. The relation of low Se intake with glucose status and carbohydrate metabolism is poorly known. RESEARCH DESIGN AND METHODS: A cross sectional analysis among healthy subjects residing in two Chinese counties with different habitual Se intakes was conducted. Fasted glucose levels were related to Se concentrations of 5686 adults by linear regression analysis with Se, body mass index, age, thyroid status, insulin and sex as independent variables. RESULTS: Serum Se correlated strongly and positively with glucose in the Se-deficient population. There was no strong relationship of Se and glucose in the non-deficient population. Overt hypoglycemia (serum glucose < 2.8 mM) was observed in 19.2% of this random sample of subjects in the Se-deficient and in 1.4% of the moderately supplied population, respectively. CONCLUSIONS: An adequate Se supply constitutes an important factor for glucose homeostasis in human subjects. The interaction between Se status and glucose control is not limited to hyperglycemia, but apparently extends to hypoglycemia risk in Se deficiency. This newly identified relationship may be of relevance for the course of severe disease including major trauma, sepsis and COVID-19, where Se deficiency has been associated with mortality risk.


Subject(s)
Blood Glucose/metabolism , Hypoglycemia/metabolism , Selenium/deficiency , Adult , Blood Glucose/analysis , COVID-19/complications , Cross-Sectional Studies , Female , Humans , Hypoglycemia/blood , Hypoglycemia/complications , Male , Middle Aged , Selenium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL